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Convective heat or mass transfer under jet flow conditions is of interest in connection 
with problems of cooling solid surfaces, the organization of a number of mass transfer pro- 
cesses in chemical technology apparatus, etc. Moreover, the model of separation-free flow 
around particles by axisymmetric jets is successfully relied upon at this time for explana- 
tion of regularities of heat and mass transfer to particles of fixed granular beds that is 
important to a broad circle of applications [i, 2]. 

The transfer to particles around which jets flow has been investigated repeatedly both 
experimentally and theoretically [3-8]. The quantity of investigations of interphasal trans- 
fer in granular beds is exceptionally high (see the bibliography in [2], for example). 
Nevertheless, up to now there has been no total clarity about the nature of the dependence 
of the appropriate Sherwood Sh (or Nusselt) parameter on the Reynolds number Re. The cor- 
relation of experimental data usually results in power-law criterial dependences with sub- 
stantially different exponents, where the discrepancy between the appropriate empirical 
formulas reaches an order and higher. 

The problem is examined in this paper for large Schmidt Sc numbers (or Prandtl) for 
spherical particles around which a laminar axisymmetric jet flows separation-free. It is 
shownthat the dependence Sh(Re) cannot be approximated by a simple power-law formula in 
a broad range of Re variation. 

i. Let us examine the flow around a sphere of radius a by a cylindrical jet of incom- 
pressible fluid of radius r 0 with a velocity u0; the flow pattern and the coordinates intro- 
duced are represented in Fig. i. The flow at the sphere surface consists of three zones: 
the fil~ flow domain for @0 < 8 < 8, and the domains near the stagnation points @ = 0 and 
@ = ~. 

The characteristics of the laminar boundary layer being formed in the frontal domain 
can be found, in principle, by using the Froessling method [9] if the solution of the prob- 
lem about ideal fluid jet flow around a sphere is used as the appropriate external asympto- 
tic expansion. In any case, in direct proximity to the forward stagnation point it is 
allowable to use the formula 

3 [3 Re'/1/2 ^ y 3 [3 Re'~l/2 y _ _  2au__~ o u, .Z=/_Z_ ) u o u . f ~ a i T )  uosin0 Re-  , ( 1 . 1 )  

for the velocity near a solid surface, where v is the kinematic viscosity; ~ is a numerical 
coefficient equal to 0.9277 for the unlimited homogeneous flow around a sphere. In a first 
approximaton this same value of ~ can also be used for jet flow, as is confirmed by the 
independence of the heat or mass flux at a frontal point from the incident jet diameter 
established in test [8]. 

Film flow on a spherical surface is analyzed in [2]. Since it contains serious inac- 
curacies, we examine this flow in detail. The Bol'ttse equations for the flow in a thin 
spherical layer have the form [9] 

a(pu)/ax 4- O(gv)/ay = o, uau / Ox + vau/ay = ~a~u/ay 2, 

9 ~ a s i n O , x  = a O ,  y = r - a .  

Integrating them with respect to dy between 0 and 6 [6(x) is the liquid film thickness] 
and taking account of the boundary conditions u = v 0, y = 0; 8u/By = 0, y = 6, we obtain 
the relationships 
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w h e r e  U i s  t h e  t a n g e n t i a l  v e l o c i t y  c o m p o n e n t  on t h e  f r e e  f i l m  s u r f a c e  [ i t  i s  t a k e n  i n t o  
a c c o u n t  t h a t  v = U d ~ ( x ) / d x  on t h i s  s u r f a c e ] .  

U s i n g  t h e  K ~ r m ~ n - P o h l h a u s e n  m e t h o d  a s  i n  [ 2 ] ,  we t a k e  

(1.2) 

u = U((3/2)q - -  (t/2)q3), ~1 ----" g/5.  ( 1 . 3 )  

The equations 

3U 17 d o (U2~ sin 0) = - -  va  sin 0 -f  ~-. ~ - - o ( U 6 s i n O ) = O '  ~ ( 1 . 4 )  

follow from (1.2) and (1.3). Introducing the bulk fluid flow rate in the medium G = vr02 x 

u 0 = 2~ asin0 I' u dy, we find from (1.4) 
0 

4 G t t dU 2625.~2a3v 
5~ a U sin 0' U-: d--0 = 544 G" sin2 0. ( i .  5 )  

The solution of (1.5) can be represented in the form 

U = U  o t-4-  544 2G 2 \ ~ s i n 2 0 0 - - ~ s l n 2 0  , ( 1 . 6 )  

where U 0 is the value of U for 8 = 80 = arcsin(r0/a ). Introducing Re in conformity with 

(1.I) and utilizing (1.3), (1.5), and (1.6), we obtain for the velocity u s at the surface 

us = - f  U ~- == 8 G sin 0 a = - 8  y t5 ? K + 54_4 e2625 a \a r 0 _ _ 0 o + 7 t  (sin 200 - -  sin 20) sin O a y ( 1 . 7 )  

[K = u0/U 0 can be found from the condition of consistency of the expressions (I.i) and 
(1.7) at 8 = 80]. Hence 

( 5  1/~__11/2 a Re-1 /a  K = ~ v  y/ ,~ (t.8) 

T h e r e f o r e ,  i t  i s  i m p o s s i b l e  t o  c o n s i d e r  t h e  a s s u m p t i o n  U 0 = u 0 t a k e n  i n  [2 ]  a s  w e l l  a s  
i n  a n u m b e r  o f  o t h e r  p a p e r s  j u s t i f i e d .  The v e l o c i t y  on t h e  f i l m - f r e e  s u r f a c e  i n c r e a s e s  i n  
p r o p o r t i o n  t o  u0 ~/4 a s  t h e  j e t  v e l o c i t y  g r o w s  a n d  d e p e n d s  s t r o n g l y  on t h e  j e t  r a d i u s  ( t h e  
l a t t e r  i s  e a s i l y  u n d e r s t o o d  by  t a k i n g  a c c o u n t  o f  t h e  p r o p o r t i o n a l i t y  o f  t h e  f l o w  r a t e  i n  
t h e  j e t  t o  t h e  a r e a  o f  i t s  t r a n s v e r s e  s e c t i o n ) .  

L e t  u s  n o t e  t h a t  t h e  m o s t  s i m p l e  p r o c e d u r e  u s e d  a b o v e  t o  c o n n e c t  t h e  f l o w s  i n  t h e  
f r o n t a l  d o m a i n  and  t h e  f i l m  f l o w  d o m a i n  r e s u l t s  i n  t h e  a p p e a r a n c e  o f  a b r e a k  i n  t h e  d e p e n d -  
e n c e  of u s on 8. In principle it is easy to improve this procedure (and, in particular, 
to eliminate the mentioned break) if the next terms of the Froessling series that govern 
their coefficients from the conditions of continuity of the derivatives of u s with respect 
to 8, are introduced into (I.i). 

Introducing the stream function # for flows near the solid surface, we obtain from 
(I.i) and (1.7) 

@ i aq~ ( i  . 9 )  
= Uog~g (0), us - -  r sin 0 ay "~ a~in 0 ag'  
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C0 
c = t ~  

where the function 

where the function g(8) and the characteristic Reynolds number have been introduced 

[0.852 PrR-esin20, 0 < 0 < 0 o ,  (1 .10 )  
- -  Re, 3/4  t i - -2  o 

[2~ ( ~  ]/~-~)1'~]"" ( a ) ' (~)' 
Re, = ts-  :o 9.64 

( t he  Reynolds  number va lue  co r r e sponds  to  a = 0 .9277) .  

The f low in the  r o o t  domain can a l s o  be d e s c r i b e d  by c o n s i d e r i n g  a smal l  neighborhood 
of the appropriate stagnation point. However, there is practically no necessity in the 
investigation of converse transfer since the heat and mass transfer in the root part intro- 
duce quite an insignificant contribution to the total heat or mass fluxes to the sphere. 
Moreover, there is no assurance that at least a small vortex zone is not formed near the 
root stagnation point in reality since the assumption about the flow being separation-free 
should be considered approximate. Consequently, it is allowable to extend the film flow 
domain down to 0 = ~, as has been done above. 

2. For definiteness, we consider convective diffusion to an ideally absorptive part- 
icle. For Sc = v/D m 1 (D is the diffusion coefficient of the impurity being absorbed), 
the approximation is valid of a thin diffusion layer in which the flow is described complete- 
ly by the relationships (1.9) and (i.i0). Inserting the Mises variables in the usual manner 
and solving the self-similar convective diffusion problem being obtained by using standard 
methods [i0], we write 

i e x p ( - - ~ t a )  dt, z=(O'~5---!2)'/4Scl/aRel/2/(O) ( ! / ( t ) s i n t d t )  -'Is y- (2 .1 )  

0 a~ 

I(0) = 
sin 0, 0 < 0 ~< 0 o = arc sin (role), 

r /Re \a/4, t t sin20)]-* 0 o < 0 < . ~ .  ~in0[l  + ( ~ * ) / 0 - -  00 + -~ sin 200-- ~ 
(2 .2 )  

has been introduced. 

Tile mass flux density evaluated from (2.1) is 

li V ~ ' 
q =  0.510Sol/aRe1/2/(0) / (t) sin t dt a " 

Its value at the forward stagnation point 

qo = qlo=o~O.736Sc*/3Re1/2Dco/a (2 .4 )  

agrees with that evaluated in [ii] but is somewhat higher than that determined in [12]. 
Integrating (2.3) over the surface of the sphere we obtain the total mass flux Q to the 
particle that can be described by using the criterial dependence 

Sh 2a < q> 2a O Re,/2 ! ( 2 .5 )  = D% = ~0c0 ~ = 0.5t0 Sc 1/3 / (0) / (t) sin t dt sin 0 dO. 

The i n t e g r a l s  in (2 .3 )  and ( 2 . 5 )  can be e x p r e s s e d  in terms of  known f u n c t i o n s .  However, 
it is apparently simpler to use numerical methods to find them because of the extreme awk- 
wardness of these expressions. 

Dependences of the flux density @(0) referred to its value q0 at a frontal point are 
represented in Fig. 2 for different o = (r/a)2 (the numbers on the curves) for Re = 10 3 
An analogous dependence for the domain of separation-free flow is displayed by the dashed 
line for unlimited homogeneous flow around a sphere obtained in [ii]. On the whole, the 
mass flux distribution over the sphere surface becomes more uniform upon going over to jet 
flow. For sufficiently thin jets a reduction in the relative flux density on the front 
part of the sphere surface occurs as compared with a sphere in an unlimited flow, which 
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is associated with the appropriate diminution in the velocity on the free liquid film sur- 
face. Refinement of the jet results in rapid growth of the critical number Re, in (i.i0) 

and (2.2). 

Distribution of the relative mass flux density q/<q> for o = 0.2 and different Re (num- 
ber on the curves) is shown in Fig. 3. An increase in Re will result in essential equil- 
ibration of the flux density over the particle surface. 

Dependences of the coefficient C(Re) on Re in the formula 

Sh = C(Re)Scl/3Re I/3 (2.6) 

following from (2.5) are given in Fig. 4 for different o (numbers at the curves). The pro- 
portionality between Sh and Re I/2 is achieved only for large Re when C(Re) : const. Such 
a dependence, found earlier in [6], follows asymptotically from (2.5) for Re >> Re,. Since 

Re, ~ (a /r0) 4 [see (i. I0)], then it is clear that the domain of Re in which the mentioned 
proportionality is disturbed should expand rapidly with refinement of the jet, as is seen 
in Fig. 4. It is possible to obtain Sh ~ Re from (2.5) for Re ~ Re, as is approximately 
valid in a range of Re variation all the broader, the thinner the jet. However, independ- 
ently of the jet thickness the local Sherwood number determined for the forward stagnation 
point turns out to be proportional to Re I/~. 

Each particle is flowed around by a jet in a flow in a granular bed, where the effect- 
ive area of a section is approximately equal to the minimal through a section of a cell con- 
taining one particle [2]. If the porosity of the granular bed is e = 0.4, then the cell 
section of o' = 0.172, where o = o'(i - 0') -I = 0.208. The effective velocity of such a 
jet is u 0 = uf/o' = u'(E/o') (uf and u' are the filtration rate and the mean fluid velocity 

in the gaps between particles). If Re' is determined by means of these latter, then the 
Re introduced above is Re = 2.326 Re'. The dependence of Sh on Re' for o = 0.208 that 
follows from (2.5) is displayed by the heavy lines in Fig. 5 where the empirical formulas 
(see the appropriate curves) 

Sh/Scl/3 ~ 0.529Re'O,G4(/),0.256Re'O,7(2), 

O,0424Re'(3),O,ftRe'~ 0.0575Re'O,S3(5), 

belonging to different authors and assembled in [2] are also presented. It is seen that 
the theoretical curve occupies an intermediate position among the empirical curves for all 
the Re' except the very largest. However, for high Re' turbulization of the laminar bound- 
ary layer and the flow in the liquid film can be expected and applicability of the developed 
theory becomes doubtful in the best case. 

Keeping in mind applied purposes, it is reasonable to approximate the dependence (2.5) 
represented in Fig. 5 by a certain comparatively simple function. Using least squares, 
we can write 

lg(Sh/Scl/3) = - - 0 . 9 6 4  + 0.915 lgRe'  - -  0.050(lgRe') 2. ( 2 . 7 )  

in the interval i < log Re' < 5 with a relative error not exceeding 1%. 

It follows from an analysis of experimental data on internal transfer in granular beds 
that (2.7) is in good agreement with them. However, computations of the flux density dis- 
tribution (2.3) over the particle surface for experiment conditions in [6, 8] resulted in 
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values exceeding the experimental somewhat on the frontal hemisphere. The agreement be- 
tween theory and experiment here is improved significantly when using values of o in the 
computations that are smaller than those communicated in [8]. The discrepancy mentioned 
is apparently associated, first, with not taking account of natural jet contraction in ex- 
periments and, second, with the comparatively rough connection between the boundary-layer 
and film flows, as already noted above. 

In conclusion, let us emphasize that the results obtained on the interphasal heat and 
mass transfer in a granular bed are referred to ordered beds in which porosity fluctuations 
can be neglected completely. The presence of inhomogeneities of a different linear scale 
is characteristic for real chaotically stacked beds. They all result in the appearance of 
fluid velocity fluctuations in the infiltrated beds, which are inevitably felt even in the 
interphasal transfer [2]. One of the problems of subsequent investigation can be discerned 
in an analysis of the influence of such fluctuations. 
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